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Abstract

Qualitative simulation is a valuable method for
predicting the behavior of partially known
dynamical systems. This paper presents an Order
of Magnitude Reasoning method which combines
purely qualitative simulation technique with some
partial numerical information in order to capture
temporal information. Duration evaluation
methods used so far are based on Mean Value
Theorem. However, for critical points, this
method is no longer suitable and a method based
on the second order Taylor formula is proposed
and presented with a validating example.

1. Introduction

Simulation aims at predicting future behavior of
a system. Qualitative simulation bases the
prediction process on simple reasoning and
qualitative calculus rather than on computer
power. Qualitative simulation algorithms have
shown promising results on a variety of small
and moderate sized examples.

Furthermore, numerical models of systems are
not always available. This is particularly true for
supervision problems (including tasks like
diagnosis, monitoring, control ...) in which
systems are often complex industrial plants.

In this framework, qualitative simulation can
replace numerical simulation to provide
qualitative informations, which may be even
more appropriate for this kind of tasks.

Kuipers' algorithm QSIM [6] was an essential
contribution to the field. This algorithm, based on
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algebra of signs is presented in Section 2.

Although numerous improvements have been
added to the first version, some problems still
remain as for example obtaining and using
adequate temporal information. This problem has
been approached in [9] and [15] but no answer
was provided at the neighbourhood of critical
points.

This paper proposes a method including Order of
Magnitude representation and based on second
order Taylor formula as a solution for this
problem.

After a recall of QSIM principles, orders of
magnitude representation is considered to
approach problems like how to evaluate durations
of simulated phenomenons specially when a
critical point is reached. A simple validation
example is presented with promising results.

2. The QSIM approach

Qualitative Physics considers that the domain of
values representing a physical parameter can be
partitionned into a small set of intervals which
represent significant qualitative distinctions.

The QSIM algorithm [6] can be considered today
as a standard in the qualitative simulation area.

The first step in qualitative modeling is to identify
significant variables from the physical point of
view. Variables are considered as continuously
differentiable functions of time. Then one have to
precise some particular values called landmarks
which delimit several regions.



Uncompletely known values are described
qualitatively in terms of their relation with this
discrete set of landmark values. The total
ordering set of all possible qualitative values a
variable can take is called his quantity space.
Moreover, a variable is not only described by its
qualitative magnitude but also by its direction of
change, which can be either decreasing, steady or
increasing. This pair of values constitutes its
qualitative value. The set of qualitative values of
all the variables of the system represents its
qualitative state.

A dynamical system model is given by some
qualitative relations between variables, called
constraints. The constraints express some
arithmetic relations like ADD(x,y,z),
MULT(x,y,z), the differential relation
DERIV(x,y) or functionnal relations M+(x,y) and

M-(x,y) which specify that x and y have the same
or opposite direction of change, respectively.
Moreover additionnal information can be given
by a tuple of landmark values for which the
constraint is satisfied. This tuple is called
corresponding values.

QSIM proceeds first by generating all the
possible qualitative states from the current one.
This is made by determining for each variable all
the possible transitions. These transitions can be
a variable reaching or moving from a landmark,
or changing the direction of change.

Then the generated qualitative states which are
not compatible with the set of constraints are
filtered out. QSIM repplies this process to every
newly created state and the result is a tree
providing all possible behavior.

3. Problems and limitations

Unfortunately, in many realistic situations, even
in simple cases, a qualitative description is
consistent with an untractible large number of
behavioral predictions. And this proliferation
increases with the system complexity.

For example for a second order oscillatory
system, when the second extremum is reached,
this extremum cannot be compared with the first
one and three cases are predicted : the new
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extremum can be bigger, smaller or equal to the
previous one. This proliferation of predicted
behaviors is one of the main limitations in
qualitative simulation today.

Besides, few results exist towards handling
duration evaluation in qualitative simulation [8]
[9] [15]. Considering for example a tank which
empties because of a breakdown, it could be
relevant to know if the tank empties in 1h, 24h or
1 month to define an action strategy.

In QSIM the time is represented by symbolic
values, which correspond to time points for
which a variable reaches a landmark value or an
extremum. But there is no way to transpose these
symbolic values in numerical ones. This means
that a qualitative behavior is only described in
terms of a sequence of qualitative states
regardless of the duration of each state. Existing
methods, with partial numerical information [8]
[15] lead more often than not to undetermined
du3ration (one infinite boundary) (see Section
5.3).

Some of the above discussed problems have
motivated many researches. Kuipers himself is
aware of the existing limitations of his algorithm.
He wrote, about the proliferation problem : "the
underlying problem is the combination of locality
with qualitative description” [6].

Simulation is essentially a local process in the
sense that a new state is calculated from
information on the preceeding one. It explicitly
uses no global information. But in qualitative
simulation, information is quite poor. The only
knowledge is that a parameter takes his value
between two adjacent landmark values which can
even be zero and infinite, and that it is increasing,
steady or decreasing. It is therefore natural that
poor information leads to poor prediction. By
making explicit some global properties of the
system, this problem can be partially overcame as
discussed below.

For example, for the second order oscillatory
system some authors [9] have proposed to add an
energy constraint in the qualitative model. In this
case, one and only one behavior is predicted. In
fact, energy constraint is implicitly included in the
differential equations. In a numerical simulation,



this is expresses by a strict relation between the
values of speed and position variables (with
truncature errors). But this strict, numerical
relation is lost with a qualitative description.

Obtaining new methods to filter out spurious
predicted states is a major part of ongoing
research in the qualitative simulation area. Recent
works include the following topics:

- Methods for changing the level of description in
order to aggregate large sets of behaviors whose
distinctions are not qualitatively significant [7].

- Methods for reasoning with "higher-order
derivative" which provide a curvature constraint
to filter out unconsistant states [ 3] [7].

- More general application of geometric phase
space concepts and Lyapunov (generalised
“energy") functions to a larger class of second
order qualitative differential equations [10] [16] .

Another approach has been developped by
Kuipers for decomposing a complex process
operating on a widely separated time scales into
several simple processes, each at its own time
scale [7].

In the first version of QSIM, qualitative
reasoning methods were applied only to pure
qualitative descriptions in which qualitative
values were specified only with ordinal relation
with the other values. Kuipers wrote about this :
"Ordinal relation are a major part of human
commonsense knowledge about quantities, and it
is remarkable how many usefull conclusion can
be drawn from such an apparently weak
description."” [8]

Nevertheless it is obvious that human's reasoning
considers also proportionality knowledge. This
remark leads to the idea of representing orders of
magnitude. Moreover this provides a way to
obtain temporal information about the duration of
the phenomenons [2] [9] [15].

4. Orders
Representation

of Magnitude

4.1. Relative Orders of Magnitude
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A first interesting attempt has been made by
Emest Davist [2]. It is based on a mathematical
formalism called relative orders of magnitude
which uses "non standard numbers algebra". A
quantity can be, either a STANDARD value, or
SMALL compared to standard values, or
LARGE. The qualitative model is, like in QSIM,
an abstraction of differential equations.

On a damped spring system, Davist showed that,
if the oscillating block is heavy (mass is
LARGE), then, before the block can reach the
zero point, it must pass through a state of
LARGE duration. Nevertheless, it turns out that
this method might be unsufficient. This
interesting result applies indeed to a particular
case. For example with a SMALL or a
STANDARD block, no temporal conclusion can
be provided.

On the other hand, physical interpretation of non

standard reals does not seem to be well suited to
knowledge representation for simulation
purposes. Indeed human representation of
magnitudes is essentially a knowledge of
proportion. This knowledge vanishes in non
standard analysis. Another problem is that using
observations or inputs directly from a physical
system to be put in the model leads to a difficult
numeric/symbolic interface problem.

For all hese reasons,it is our believe that absolute
orders of magnitude are a more appropriate
representation to be implemented in a qualitative
simulation algorithm.

4.2. Absolute Orders of Magnitude

Each landmark is represented by an interval of

numerical values which specify the range in
which the real value of the landmark may be
included. General mathematical properties of
such representation have been studied in [19].
The qualitative value of a variable contains
therefore partial numerical information. This
representation is also used in [9].

Techniques of qualitative calculus presented in
[12] can be used to filter some spurious states on
ADD and MULT constraints.

Let the variable x(t) be such that /j < x(1) < [j4], in
the time interval Jt;, tj+][. The qualitative value



of x will be written x(2) = Jlj, lj+J[ (qualitative
equality).
The qualitative equality is defined as follows : let
A, B two real intervals, then

A=B if and only if ANB #¢.

Here /j and /j,] represent themselves intervals.
Therefore the interval ]ljlj+][ represents the
interval between the lower boundary of /jand the
upper boundary of /j;].

No specific notation for qualitative values has
been used. x(t) may be a qualitative value or a
real one. Ambiguities are discarded vanishes
when using qualitative equality. For example
ADD(x,y,z) can be written x+y=z.

4.3. Refinment of M+ functions by
orders of magnitude

M™*(x,y) and M-(x,y) constraints only check
whether the directions of change of x and y are
equal. These constraints are not well suited to
orders of magnitude knowledge propagation.
Kuipers' Q2 algorithm [8] uses two numerical
enveloppe curves to constraint the relation
between x and y. We prefer a modelisation by
qualitative piecewise functions. The aim is to
obtain an order of magnitude of the slope of the
curve y(x).

Modelling a constraint y=f{x) is performed in the
following way :

1. Devide the curve in regions of slowly varying
slope.

2. Identify pairs of corresponding values to
delimit each of these regions.

3. Specify two limit values pJ, p2 for each
region of the curve which define the qualitative
slope p = Jp1,p2[ in a given region.

The new constraint is then specified as follows :

Func (xy), Ip1, P'11, (x1,y1), Ip2, p'2[, (x2,
)’2):--- ’ ]pn: p'n[

This finer modelisation seems more suitable than
M+ or M- constraints to cope with available
applications knowledge. This is the case for the
linear ratio between pressure and height in a tank.
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When no additionnal information other than M*
(or M) is available, Func(x,y) still can use the
qualitative slope p = J0,+oof (orp = ]-00,0[). This
remains in accordance with the original idea of
qualitative simulation to be able to handle poor
knowledge models.

The filtering related to the Func constraint is
carried out with order of magnitude qualitative
calculus [20]. Func(x,y) is equivalenttoy =p.x.
It can be noticed however that when p has one
limit value equal to zero, filtering may be
unefficient. Research is going on in order to
introduce a curvature constraint in such cases.

5. Duration evaluation and temporal
filtering

5.1. Generalities

In standard QSIM constraints based qualitative
model, time appears (implicitly) through the
derivative constraint only. Only the derivative
constraint might therefore lead to time evaluation.

Either in QSIM which uses signs algebra, or in
Davist' algorithm working with non standard
reals, the filtering method is based on the
propagation of order relations with reference to
the corresponding values, which represent "fixed
points" for the variables involved in the
constraint. Temporal information cannot be
provided this way since the time variable is
treated differently than other variables and is not
referred to landmarks by corresponding values.
Therefore, expressing durations needs to restore
a numerical ratio between time and other
variables, which can be performed through the
derivative constraint by using orders of
magnitude.

Without mathematical integration of differential
equations, there is no way to give a mathematical
expression of time as a function of other
parameters of the system. Classical formulas of
functionnal analysis (Taylor) are therefore
necessary to make time explicit. Notice that
numerical simulation schemes are based on the
same principle.



5.2. Duration evaluation

Let x(t) a variable of the system, that is a
continuously differentiable function of time, and
consider two time points 7 and 2, then, the first
order Taylor-Lagrange formula shows that there
exist ¢ between t7 and 12 such that :

x(12) = x(1]) + (12-]).x(1)

Therefore, when knowing the values of x(¢) and
x(22), two limit values of the derivative leads to
two limit values of the duration. Notice that this
is not an approximation (as in Taylor-MacLaurin
formula) ; all the possible values of the derivative
are taken into account to provide all the possible
values of the duration. This is in accordance with
qualitative simulation philosophy.

The duration corresponding to the state in which
the variable x evolves between two consecutive
landmarks x7 and x2 is evaluated by the
following formula :

At =(x2x])/ x

where X represents the qualitative value of the
derivative between ¢] and 12, = is the qualitative
equality [18] and Ar the qualitative value of the
duration.

Obviously, the more important the variation of
the derivative in the interval Je7,¢3/, the less
precise the duration.

Although the formalism is a little different the
principle of the calculus is the same as in [8]
[15]. Itis based on the Mean Value Theorem.

If x is not an original system variable, its
expression may be derived analytically from the
set of constraints. Kuipers shows a systematic
method for obtaining signs of the second order
derivatives of all the variables from the higher
order derivative of the system [7]. This method is
also well suited to obtain orders of magnitude of
the first order derivatives.

When evaluating a duration for a qualitative state
of x between tj and tf , we must be aware that
other variables than x may have changed their
qualitative value between the time points ¢ and tx
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inducing some possible changes on the qualitative
value of x. In such cases, the qualitative values
of each of those variables on Jtjtx/ are taken as
the union of their qualitative values on the
intervals between #; and tg. This solution is the
simplest but the roughest. Indeed, if the variation
of X is too important, the evaluated duration will
be very unprecise. A solution might be to
generate cleverly new landmarks on x or x which
could delimit intervals on which X has weak
variation. The total duration could then be
evaluated more precisely by evaluating the
durations on each of those intervals then addying
up. This is one of our research directions at
present time.

5.3. Duration evaluation at critical points

Now, consider the case of a critical point for
which x reaches 0 when x is between x7 and
x2, QSIM generates automatically a new
landmark x* at a time point r* . Duration calculus
is then unefficient with first order formula.
Indeed, zero derivative leads to one infinite
boundary for the duration. As time points often
correspond to new landmarks creation, this
situation occurs often in qualitative simulation
and has motivated our work. It is an attempt to
overcome the problem of infinite duration.

By using the same procedure as for first order
derivative, we can obtain the analytical
expression of second order derivatives and use
second order Taylor-Lagrange formula: between
two time points £, fp there exists ¢* such that :

X(1) = X(to) + (1-10) X(1p) + 112.(t-1o2.X(t")
If 1o is choosen as the critical point t*, we get:
x(t) = x* + 172 (t-r*) X(t')
Two cases have to be considered :

t< % Ax=-12.A2.%
> Ac=+1R2.AR.%

There are two unknown variables : Ax, Ar which
contain the undetermined qualitative values x*
and t*. A second equation is given by the first
order derivative constraint on X :



A = A X

Except for second order critical points (% and X
simultaneously equal to zero), an evaluation of At
and also of x*, the extremum of x at critical time
point #*, can be provided. Some difficulties of
the method are discussed in the example (Section
5.4).

As in [8] [15], the method for temporal filtering
is based on the following principle : given the
qualitative state duration Aty for each variable x
which could change state on the next time point,
temporal filtering consists in eliminating all the
transitions on the variables y for which there
exists x, such that Aty < Aty

Aty Aty Aty < Aty
—t—t—t—t
———t > t
L
Alx Aty Aty = Aty

In the second case, it is impossible to filter.

5.4. Examples

In the classical example of the ball throw up with
an initial velocity, time evaluated with our method
matches exactly theoretical time obtained by
integrating differential equation, since it is a
second order polynomial, like our Taylor
formula. In this example, temporal filtering
provides in any case the relative position of the
maximum compared to any reference point,
which is not obtained by the classical approach.

Consider, now the example of second order
oscillating system (spring and a mass without
friction).
Let the set of constraints given by :

deriv(x,v).

deriv(v,a).

func(a,x),(0,0),-1.00.

Notice that this is the qualitative model of
function x = sin(t). The qualitative slope of the
func constraint could be choosen as an interval
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but the aim is to valid the method without
propagating any additionnal unaccuracy. The
same is true for the initial values given below.

When starting from the initial point:
to=1.05s (m/3)
xo = 0.87m (V312)
Vo = 0.5mis

At the first time point ¢], a critical point for x
(v1=0) is obtained and the duration At = ¢] -t is
such that :

x] -xp =12.82.Jx0 x1[
Vo =At]xe X1 [

The unknown variables are At and x]. The
system resolution is performed as follows:

At =vy! Jxo x1[

(x1 X0 ).Jx0 X1 [2 = 112.ve2 Jxp X1 [
Then

Jx1 X0 ) XP(X1 X0 ) XP[

= 12y P.x0, 112v92.x][

Extremal conditions on x] = Jx7 X] [ have to be
deduced from this qualitative equation.
A =B means that ANB #¢ i.e. (A<B and A>B).

Therefore:
(%1 X0 ) X2 = 112.vp2.X]
(x] %0 ) X12=112.v2.x0

We obtain:
X7 = %031 (xf - 112v92) = 1.04
._x_]3-xO .}lz - 129 Z.XO =0
=>x1=098

Then:
X1 =]0.98, 1.4
(lThe theoretical value calculated from x = sin(?) is
.00)

We get also:
&=05/ %0 x1[=051]087 1.04
=048, 057

(Theoretical value : 0.52)

The major problem of the method lies on the fact
that the expression of x contains generally the



unknown variable x] what implies algebraic
manipulations which require the use of formal
calculus system. Relation between x et xJ
depends on the set of constraints.

Another problem appears when starting with the
initial state xp= 0. Indeed between to and t] the
qualitative state of the system is :

x=]0,x1/[,inc
v =0, vo[, dec
a=]-x]10[, dec

We are here at the neighbourhood of two critical
points : forx atz] , for v atto . The problem
cannot be solved as previously. By considering
an arbitrary tuple of corresponding values (x’o,
v'o, @’0) at some time point t'o (fp < 'y < t]),
the original time interval is divided into two
subintervals containing each only one critical
value. Then our method is suitable. By giving a
value to one parameter in the tuple, the two others
will be deduced by the simulation, as for
extremum evaluation. Here, because xj is
unknown, we must give a value to v'o. And our
interest is to choose v’ not too far from vo
because duration precision is conditionned by the
ratio vo /v'o .

6. Conclusion

This new aproach provides a way to integrate
time representation within qualitative simulation.
It is an important issue in the field of supervised
control system.

Although techniques presented here refer to
independant works on order of magnitude
calculus, the simulation is based on QSIM
principles, that is generating all the possible
following states from a current one and then
testing the compatibility with the constraints in
the model. It is shown that temporal evaluation
and filtering can advantageously take part in the
simulation process. Systematic procedures to
overcome or manage the formal calculus,
required by the method, for duration calculus at
critical points still have to be developped and
implemented.
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